A Class of Strongly Singular Radon Transforms on the Heisenberg Group

نویسنده

  • NEIL LYALL
چکیده

We primarily consider here the L mapping properties of a class of strongly singular Radon transforms on the Heisenberg group H; these are convolution operators on H with kernels of the form M(z, t) = K(z)δ0(t) where K is a strongly singular kernel on C . Our results are obtained by utilizing the group Fourier transform and uniform asymptotic forms for Laguerre functions due to Erdélyi. We also discuss the behavior of related twisted strongly singular operators on L(C) and obtain results in this context independently of group Fourier transform methods. Key to this argument is a generalization of the results for classical strongly singular integrals on L(R).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Radon Transforms on the Heisenberg Group

In this article, we introduce a kind of unitary operator U associated with the involution on the Heisenberg group, invariant closed subspaces are identified with the characterization spaces of sub-Laplacian operators. In the sense of vector-valued functions, we study the theory of continuous wavelet transform. Also, we obtain a new inversion formula of Radon transform on the Heisenberg group Hn.

متن کامل

Sparse Bounds for a Prototypical Singular Radon Transform

We use a variant of the technique in [Lac17a] to give sparse L(log(L)) bounds for a class of model singular and maximal Radon transforms.

متن کامل

A T(1) Theorem for Singular Radon Transforms

The purpose of this paper is to extend and clarify the methods of the papers [G1] and [G2] by using the methods of [G3], incorporating ideas from Carnot-Caratheodory geometry such as those of the fundamental paper [NSW]. We will thereby prove an analogue for singular Radon transforms to the T (1) theorem of David and Journe [DJ]. As in [G1] and [G2], we will associate a singular integral operat...

متن کامل

ar X iv : 0 70 4 . 15 37 v 1 [ m at h . C A ] 1 2 A pr 2 00 7 ESTIMATES FOR SINGULAR INTEGRALS AND EXTRAPOLATION

In this note, we study singular integrals with rough kernels, which belong to a class of singular Radon transforms. We prove certain estimates for the singular integrals that are useful in an extrapolation argument. As an application, we prove L p boundedness of the singular integrals under a certain sharp size condition on their kernels.

متن کامل

Discrete Radon Transforms and Applications to Ergodic Theory

We prove L boundedness of certain non-translation-invariant discrete maximal Radon transforms and discrete singular Radon transforms. We also prove maximal, pointwise, and L ergodic theorems for certain families of non-commuting operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004